Below is a list of publications in which Barracuda Virtual Reactor has been used. If you are an author and we’ve missed your publication, please let us know by emailing info@backup.cpfd-software.com and we will be happy to add your paper.
(1)
Abbasi, A.; Ege, P. E.; de Lasa, H. I. CPFD Simulation of a Fast Fluidized Bed Steam Coal Gasifier Feeding Section. Chemical Engineering Journal 2011, 174 (1), 341–350. https://doi.org/10.1016/j.cej.2011.07.085.
(2)
Abbasi, A.; Islam, M. A.; Ege, P. E.; de Lasa, H. I. Downer Reactor Flow Measurements Using CREC-GS-Optiprobes. Powder Technology 2012, 224, 1–11. https://doi.org/10.1016/j.powtec.2012.02.005.
(3)
Abbasi, A.; Islam, M. A.; Ege, P. E.; de Lasa, H. I. CPFD Flow Pattern Simulation in Downer Reactors. AIChE Journal 2013, 59 (5), 1635–1647. https://doi.org/10.1002/aic.13956.
(4)
Adams, B.; Schroedter, T. MODELING PRESSURIZED DENSE PHASE COAL FLUIDIZATION AND TRANSPORT, 2019 http://event.asme.org/POWER-2019/Program/#/Power2019/sessions/27.
(5)
Adkins, B. D.; Kapur, N.; Dudley, T.; Webb, S.; Blaser, P. Experimental Validation of CFD Hydrodynamic Models for Catalytic Fast Pyrolysis. Powder Technology 2017, 316, 725–739. https://doi.org/10.1016/j.powtec.2016.11.060.
(6)
Adkins, B.; Dudley, T.; Kapur, N.; Blaser, P.; Parker, J.; Webb, S. Experimental Validation of CFD Hydrodynamic Models for Catalytic Fast Pyrolysis (CFP), 2016 http://dc.engconfintl.org/fluidization_xv/152.
(7)
Amblard, B.; Singh, R.; Gbordzoe, E.; Raynal, L. CFD Modeling of the Coke Combustion in an Industrial FCC Regenerator. Chemical Engineering Science 2016. https://doi.org/10.1016/j.ces.2016.12.055.
(8)
Ariyaratne, W. K. H.; Ratnayake, C.; Melaaen, M. C. Application of the MP-PIC Method for Predicting Pneumatic Conveying Characteristics of Dilute Phase Flows. Powder Technology 2017, 310, 318–328. https://doi.org/10.1016/j.powtec.2017.01.048.
(9)
Berrouk, A. S.; Huang, A.; Bale, S.; Thampi, P.; Nandakumar, K. Numerical Simulation of a Commercial FCC Regenerator Using Multiphase Particle-in-Cell Methodology (MP-PIC). Advanced Powder Technology 2017, 28 (11), 2947–2960. https://doi.org/10.1016/j.apt.2017.09.002.
(10)
Berrouk, A. S.; Pornsilph, C.; Bale, S. S.; Du, Y.; Nandakumar, K. Simulation of a Large-Scale FCC Riser Using a Combination of MP-PIC and Four-Lump Oil-Cracking Kinetic Models. Energy Fuels 2017, 31 (5), 4758–4770. https://doi.org/10.1021/acs.energyfuels.6b03380.
(11)
Bigda, J. CPFD Numerical Study of Impact Dryer Performance. Drying Technology 2014, 32 (11), 1277–1288. https://doi.org/10.1080/07373937.2014.929586.
(12)
Bigda, J. Numerical Modelling of CO2 Enhanced Coal Gasification in a Pressurized Circulating Fluidized Bed Reactor, 2016 https://tu-freiberg.de/sites/default/files/media/professur-fuer-energieverfahrenstechnik-und-thermische-rueckstandsbehandlung-16460/publikationen/abstract_2016_23-2.pdf.
(13)
Blaser, P.; Fletcher, R.; Clark, S. AM-17-77 Improving FCC Economics through Computational Particle Fluid Dynamics Simulation; AFPM: San Antonio, TX, 2017. https://www2.afpm.org/forms/store/ProductFormPublic/am-17-77-improving-fcc-economics-through-computational-particle-fluid-dynamics-simulation.
(14)
Blaser, P.; Thibault, S.; Sexton, J. Use of Computational Modeling for FCC Reactor Cyclone Erosion Reduction at the Marathon Petroleum Catlettsburg Refinery; ECI: NH Conference Centre Leeuwenhorst Noordwijkerhout, The Netherlands, 2013 http://dc.engconfintl.org/fluidization_xiv/92/.
(15)
Blaser, P.; Barua, R. Digitally Transforming Refineries. Hydrocarbon Engineering 2019 https://backup.cpfd-software.com/news/cpfd-featured-in-april-2019-issue-of-hydrocarbon-engineering.
(16)
Blaser, P.; Gabites, J.; Brooke, A. Viva Energy’s Geelong Refinery Reduces FCCU Turnaround Risk. Hydrocarbon Processing 2018, Special Focus: Refining Technology, 2–5 https://backup.cpfd-software.com/news/cpfd-featured-in-september-2018-issue-of-hydrocarbon-processing.
(17)
Blaser, P. J.; Corina, G. Validation and Application of Computational Modeling to Reduce Erosion in a Circulating Fluidized Bed Boiler. International Journal of Chemical Reactor Engineering 2012, 10 (1). https://doi.org/10.1515/1542-6580.3001.
(18)
Breault, R. W.; Huckaby, E. D. Parametric Behavior of a CO2 Capture Process: CFD Simulation of Solid-Sorbent CO2 Absorption in a Riser Reactor. Applied Energy 2013, 112, 224–234. https://doi.org/10.1016/j.apenergy.2013.06.008.
(19)
Cha, B.; Kim, J.; Son, S. R.; Park, D. S.; Moon, I. CPFD Simulation of Fluidized Bed Flow in FCC Regenerator; London, 2012; pp 1153–1157.
(20)
Chen, C.; Werther, J.; Heinrich, S.; Qi, H.-Y.; Hartge, E.-U. CPFD Simulation of Circulating Fluidized Bed Risers. Powder Technology 2013, 235, 238–247. https://doi.org/10.1016/j.powtec.2012.10.014.
(21)
Chen, X.; Ma, J.; Tian, X.; Wan, J.; Zhao, H. CPFD Simulation and Optimization of a 50 KWth Dual Circulating Fluidized Bed Reactor for Chemical Looping Combustion of Coal. International Journal of Greenhouse Gas Control 2019, 90, 102800. https://doi.org/10.1016/j.ijggc.2019.102800.
(22)
Cho, H.; Cha, B.; Kim, S.; Ryu, J.; Kim, J.; Moon, I. Numerical Analysis for Particle Deposit Formation in Reactor Cyclone of Residue Fluidized Catalytic Cracking. Ind. Eng. Chem. Res. 2013, 52 (22), 7252–7258. https://doi.org/10.1021/ie302509q.
(23)
Cho, H.; Cha, B.; Ryu, J.; Kim, S.; Moon, I. CPFD Simulation for Particle Deposit Formation in Reactor Cyclone of RFCC; Singapore, 2012; pp 915–919.
(24)
Clark, S. Particle-Fluid Flow Simulations of an FCC Regenerator; ECI: Sun River, OR, 2011; p 9 http://dc.engconfintl.org/cgi/viewcontent.cgi?article=1087&context=cfb10.
(25)
Clark, S. M.; Blaser, P. J.; Cocco, R. A.; Issangya, A. Numerical Simulations of PSRI Cold-Flow FCC Stripper Experiment with Subway Grating Baffles. AIChE Annual Meeting 2017 November 2, 2017 https://www.aiche.org/conferences/aiche-annual-meeting/2017/proceeding/paper/751g-numerical-simulations-psri-cold-flow-fcc-stripper-experiment-subway-grating-baffles.
(26)
Clark, S.; Snider, D.; Fletcher, R. Multiphase Simulation of a Commercial Fluidized Catalytic Cracking Regenerator; Pittsburgh, 2012; p 9 https://backup.cpfd-software.com/wp-content/uploads/attachments/2012-09-24_AIChE_Extended_Abstract_Multiphase_Simulation_of_a_Commercial_Fluidized_Catalytic_Cracking_Regenerator.pdf.
(27)
Clark, S.; Snider, D. M.; Spenik, J. CO2 Adsorption Loop Experiment with Eulerian–Lagrangian Simulation. Powder Technology 2013, 242, 100–107. https://doi.org/10.1016/j.powtec.2013.01.011.
(28)
Cocco, R.; Arrington, Y.; Hays, R.; Findlay, J.; Karri, S. B. R.; Knowlton, T. M. Jet Cup Attrition Testing. Powder Technology 2010, 200 (3), 224–233. https://doi.org/10.1016/j.powtec.2010.02.029.
(29)
Cocco, R.; Findlay, J.; Knowlton, T. PSRI External Publication – EP26 How Intrusive Are Our Intrusive Probes? PSRI November 10, 2009.
(30)
Cocco, R. A.; Karri, S. B. R.; Knowlton, T. M.; Findlay, J.; Gauthier, T.; Chew, J. W.; Hrenya, C. M. Intrusive Probes in Riser Applications. AIChE Journal 2017. https://doi.org/10.1002/aic.15892.
(31)
Cocco, R.; Karri, S. B. R.; Knowlton, T. Avoid Fluidization Pitfalls. CEP 2014, No. December, 40–45 http://www.aiche.org/resources/publications/cep/2014/december/avoid-fluidization-pitfalls.
(32)
Fakourian, S.; Fry, A.; Jasperson, T. Analysis of Particle Behavior inside the Classifier of a Raymond Bowl Mill While Co-Milling Woody Biomass with Coal. Fuel Processing Technology 2018, 182, 95–103. https://doi.org/10.1016/j.fuproc.2018.10.023.
(33)
Fletcher, R.; Blaser, P.; Pendergrass, J.; Peccatiello, K. CAT-16-17 The Experience of a Team of Experts to Resolve Severe FCC Regenerator Maldistribution; AFPM, 2016 https://www2.afpm.org/forms/store/ProductFormPublic/cat-16-17-the-experience-of-a-team-of-experts-to-resolve-severe-fcc-regenerator-maldistribution.
(34)
Fletcher, R.; Clark, S.; Parker, J.; Blaser, P. AM-16-15 Identifying the Root Cause of Afterburn in Fluidized Catalytic Crackers; AFPM: San Francisco, CA, 2016 https://www2.afpm.org/forms/store/ProductFormPublic/am-16-15-identifying-the-root-cause-of-afterburn-in-fluidized-catalytic-crackers.
(35)
Hamilton, M. A.; Whitty, K. J.; Lighty, J. S. Incorporating Oxygen Uncoupling Kinetics into Computational Fluid Dynamic Simulations of a Chemical Looping System. Energy Technology 2016. https://doi.org/10.1002/ente.201600031.
(36)
Hu, S.; Wang, W.; Wessel, R.; Flynn, T.; Kraft, D. Effect of In-Bed Heat Exchanger on Bed Inventory Imbalance in a Pantleg CFB Design – a CFD Study; Beijing, China, 2014; p 6.
(37)
Jayarathna, C. K.; Halvorsen, B. M.; Tokheim, L.-A. Experimental and Theoretical Study of Minimum Fluidization Velocity and Void Fraction of a Limestone Based CO2 Sorbent. Energy Procedia 2014, 63, 1432–1445. https://doi.org/10.1016/j.egypro.2014.11.153.
(38)
Jiang, Y.; Qiu, G.; Wang, H. Modelling and Experimental Investigation of the Full-Loop Gas–Solid Flow in a Circulating Fluidized Bed with Six Cyclone Separators. Chemical Engineering Science 2014, 109, 85–97. https://doi.org/10.1016/j.ces.2014.01.029.
(39)
Karimipour, S.; Pugsley, T. Application of the Particle in Cell Approach for the Simulation of Bubbling Fluidized Beds of Geldart A Particles. Powder Technology 2012, 220, 63–69. https://doi.org/10.1016/j.powtec.2011.09.026.
(40)
Klimanek, A.; Bigda, J. CFD Modelling of CO2 Enhanced Gasification of Coal in a Pressurized Circulating Fluidized Bed Reactor. Energy 2018, 160, 710–719. https://doi.org/10.1016/j.energy.2018.07.046.
(41)
Kodam, M.; Freireich, B. J.; Pretz, M. T.; Stears, B. A. Performance Prediction of Riser Termination Devices Using Barracuda Virtual Reactor®. Powder Technology 2017, 316, 190–197. https://doi.org/10.1016/j.powtec.2017.03.028.
(42)
Kokourine, A.; Adham, K. Modeling and Process Features of Plug Flow Reactor with Internal Recirculation for Biomass Pyrolysis. Journal of Chemical Engineering & Process Technology 2017, 08 (04). https://doi.org/10.4172/2157-7048.1000353.
(43)
Kraft, S.; Kirnbauer, F.; Hofbauer, H. CPFD Simulations of an Industrial-Sized Dual Fluidized Bed Steam Gasification System of Biomass with 8 MW Fuel Input. Applied Energy 2017, 190, 408–420. https://doi.org/10.1016/j.apenergy.2016.12.113.
(44)
Kraft, S.; Kirnbauer, F.; Hofbauer, H. Influence of Drag Laws on Pressure and Bed Material Recirculation Rate in a Cold Flow Model of an 8 MW Dual Fluidized Bed System by Means of CPFD. Particuology 2018, 36, 70–81. https://doi.org/10.1016/j.partic.2017.04.009.
(45)
Krusch, S.; Scherer, V. Barracuda Simulation of a CFBC Test Rig: Comparison with Experimental Results; Seoul, Korea, 2018; pp 806–815.
(46)
Lan, X.; Shi, X.; Zhang, Y.; Wang, Y.; Xu, C.; Gao, J. Solids Back-Mixing Behavior and Effect of the Mesoscale Structure in CFB Risers. Industrial & Engineering Chemistry Research 2013, 52 (34), 11888–11896. https://doi.org/10.1021/ie3034448.
(47)
Lanza, A.; de Lasa, H. Scaling-up down Flow Reactors. CPFD Simulations and Model Validation. Computers & Chemical Engineering 2017, 101, 226–242. https://doi.org/10.1016/j.compchemeng.2017.02.034.
(48)
Lanza, A.; Islam, M. A.; de Lasa, H. CPFD Modeling and Experimental Validation of Gas–Solid Flow in a down Flow Reactor. Computers & Chemical Engineering 2016, 90, 79–93. https://doi.org/10.1016/j.compchemeng.2016.04.007.
(49)
Li, X.; Jin, J.; Zhu, F.; Wang, X.; Lv, X.; Qu, Z. Design and CPFD Simulation of a Novel Fluidized Beds Reactor. In 2018 Chinese Automation Congress (CAC); IEEE: Xi’an, China, 2018; pp 4056–4060. https://doi.org/10.1109/CAC.2018.8623632.
(50)
Liang, Y.; Zhang, Y.; Li, T.; Lu, C. A Critical Validation Study on CPFD Model in Simulating Gas–Solid Bubbling Fluidized Beds. Powder Technology 2014, 263, 121–134. https://doi.org/10.1016/j.powtec.2014.05.003.
(51)
Liang, Y.; Zhang, Y.; Lu, C. CPFD Simulation on Wear Mechanisms in Disk–Donut FCC Strippers. Powder Technology 2015, 279, 269–281. https://doi.org/10.1016/j.powtec.2015.04.012.
(52)
Liu, H.; Li, J.; Wang, Q. Three-Dimensional Numerical Simulation of the Co-Combustion of Oil Shale Retorting Solid Waste with Cornstalk Particles in a Circulating Fluidized Bed Reactor. Applied Thermal Engineering 2018, 130, 296–308. https://doi.org/10.1016/j.applthermaleng.2017.10.107.
(53)
Liu, H.; Cattolica, R. J.; Seiser, R.; Liao, C. Three-Dimensional Full-Loop Simulation of a Dual Fluidized-Bed Biomass Gasifier. Applied Energy 2015, 160, 489–501. https://doi.org/10.1016/j.apenergy.2015.09.065.
(54)
Liu, H.; Cattolica, R. J.; Seiser, R. Operating Parameter Effects on the Solids Circulation Rate in the CFD Simulation of a Dual Fluidized-Bed Gasification System; Melbourne, Australia, 2015.
(55)
Liu, H.; Cattolica, R. J.; Seiser, R. CFD Studies on Biomass Gasification in a Pilot-Scale Dual Fluidized-Bed System. International Journal of Hydrogen Energy 2016. https://doi.org/10.1016/j.ijhydene.2016.04.205.
(56)
Liu, H.; Cattolica, R. J.; Seiser, R. Operating Parameter Effects on the Solids Circulation Rate in the CFD Simulation of a Dual Fluidized-Bed Gasification System. Chemical Engineering Science 2017, 169, 235–245. https://doi.org/10.1016/j.ces.2016.11.040.
(57)
Loha, C.; Chattopadhyay, H.; Chatterjee, P. K. Three Dimensional Kinetic Modeling of Fluidized Bed Biomass Gasification. Chemical Engineering Science 2014, 109, 53–64. https://doi.org/10.1016/j.ces.2014.01.017.
(58)
Lu, H.; Guo, X.; Zhao, W.; Gong, X.; Lu, J. Experimental and CPFD Numerical Study on Hopper Discharge. Industrial & Engineering Chemistry Research 2014, 53 (30), 12160–12169. https://doi.org/10.1021/ie403862f.
(59)
Mandich, K. J.; Cattolica, R. J. BED EXPANSION AND PRESSURE DROP IN A BUBBLING FLUIDIZED BED. June 2014.
(60)
Nakhaei, M.; Wu, H.; Grévain, D.; Jensen, L. S.; Glarborg, P.; Dam–Johansen, K. CPFD Simulation of Petcoke and SRF Co–Firing in a Full–Scale Cement Calciner. Fuel Processing Technology 2019, 196, 106–153. https://doi.org/10.1016/j.fuproc.2019.106153.
(61)
Nardo, A. D.; Calchetti, G.; Stendardo, S. Modeling and Simulation of an Oxygen-Blown Bubbling Fluidized Bed Gasifier Using the Computational Particle- Fluid Dynamics (CPFD) Approach. Journal of Applied Fluid Mechanics 2018, 11 (4), 825–834. https://doi.org/10.18869/acadpub.jafm.73.247.28397.
(62)
O’Rourke, P. J.; Snider, D. M. Inclusion of Collisional Return-to-Isotropy in the MP-PIC Method. Chemical Engineering Science 2012, 80, 39–54. https://doi.org/10.1016/j.ces.2012.05.047.
(63)
O’Rourke, P. J.; Snider, D. M. A New Blended Acceleration Model for the Particle Contact Forces Induced by an Interstitial Fluid in Dense Particle/Fluid Flows. Powder Technology 2014, 256, 39–51. https://doi.org/10.1016/j.powtec.2014.01.084.
(64)
O’Rourke, P. J.; Snider, D. M. An Improved Collision Damping Time for MP-PIC Calculations of Dense Particle Flows with Applications to Polydisperse Sedimenting Beds and Colliding Particle Jets. Chemical Engineering Science 2010, 65 (22), 6014–6028. https://doi.org/10.1016/j.ces.2010.08.032.
(65)
O’Rourke, P. J.; Zhao, P. (Pinghua); Snider, D. A Model for Collisional Exchange in Gas/Liquid/Solid Fluidized Beds. Chemical Engineering Science 2009, 64 (8), 1784–1797. https://doi.org/10.1016/j.ces.2008.12.014.
(66)
Parker, J.; Williams, K.; Zhao, P. (Pinghua); Blaser, P.; Thibault, S. CPFD Modeling of Industrial-Scale Dry Flue Gas Desulfurization Systems; Beijing, China, 2014; p 6 https://www.researchgate.net/publication/286074615_CPFD_modeling_of_industrial-scale_dry_flue_gas_desulfurization_systems.
(67)
Parker, J.; LaMarche, K.; Chen, W.; Williams, K.; Stamato, H.; Thibault, S. CFD Simulations for Prediction of Scaling Effects in Pharmaceutical Fluidized Bed Processors at Three Scales. Powder Technology 2013, 235, 115–120. https://doi.org/10.1016/j.powtec.2012.09.021.
(68)
Parker, J.; Larson, A. Application of Recent CFD Advancements to the Modeling of Chemical Looping Systems; Park City, UT, 2018; p 9 https://backup.cpfd-software.com/news/5th-international-conference-on-chemical-looping-2018.
(69)
Parker, J. M. Validation of CFD Model for Polysilicon Deposition and Production of Silicon Fines in a Silane Deposition FBR. International Journal of Chemical Reactor Engineering 2011, 9 (1). https://doi.org/10.1515/1542-6580.2549.
(70)
Parker, J. M. CFD Model for the Simulation of Chemical Looping Combustion. Powder Technology 2014, 265, 47–53. https://doi.org/10.1016/j.powtec.2014.01.027.
(71)
Perera, K. K.; Thapa, R. K.; Halvorsen, B. M. Simulation and Optimization of the Steam Gasification Process Using CPFD. In Energy Production and Management in the 21st Century; Ekateringburg, Russia, 2014; Vol. 2, pp 1215–1226. https://doi.org/10.2495/EQ141132.
(72)
Rostom, S.; de Lasa, H. Downer Fluidized Bed Reactor Modeling for Catalytic Propane Oxidative Dehydrogenation with High Propylene Selectivity. Chemical Engineering and Processing – Process Intensification 2019, 137, 87–99. https://doi.org/10.1016/j.cep.2019.02.002.
(73)
Ryan, E. M.; DeCroix, D.; Breault, R.; Xu, W.; Huckaby, E. D.; Saha, K.; Dartevelle, S.; Sun, X. Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System. Powder Technology 2013, 242, 117–134. https://doi.org/10.1016/j.powtec.2013.01.009.
(74)
Setlhaku, M.; Bronsaer, P.; Parker, J. Dynamic Behavior of Fluidized Bed Reactors for Gas Phase LLDPE Polymerization. May 22, 2016 https://dc.engconfintl.org/fluidization_xv/68/.
(75)
Singh, R.; Gbordzoe, E. Modeling FCC Spent Catalyst Regeneration with Computational Fluid Dynamics. Powder Technology 2017, 316, 560–568. https://doi.org/10.1016/j.powtec.2016.10.058.
(76)
Snider, D.; Banerjee, S. Heterogeneous Gas Chemistry in the CPFD Eulerian–Lagrangian Numerical Scheme (Ozone Decomposition). Powder Technology 2010, 199 (1), 100–106. https://doi.org/10.1016/j.powtec.2009.04.023.
(77)
Snider, D. M.; Clark, S. M.; O’Rourke, P. J. Eulerian–Lagrangian Method for Three-Dimensional Thermal Reacting Flow with Application to Coal Gasifiers. Chemical Engineering Science 2011, 66 (6), 1285–1295. https://doi.org/10.1016/j.ces.2010.12.042.
(78)
Solnordal, C. B.; Kenche, V.; Hadley, T. D.; Feng, Y.; Witt, P. J.; Lim, K.-S. Simulation of an Internally Circulating Fluidized Bed Using a Multiphase Particle-in-Cell Method. Powder Technology 2015, 274, 123–134. https://doi.org/10.1016/j.powtec.2014.12.045.
(79)
Stanly, R.; Shoev, G.; A., K. A. Numerical Simulation of Gas-Solid Flows in Fluidized Bed with TFM Model; Novosibirsk, Russia, 2017; p 030040. https://doi.org/10.1063/1.5007498.
(80)
Tsai, K. CFD Modeling of Sand Distribution in a Multiply-Perforated Horizontal Pipe for Applications in Hydraulic Fracturing, 2013.
(81)
Tsai, K. CFD Modeling of Proppant Transport in Tight Gas Fractures and Strategies for Production Enhancements, 2014.
(82)
Tsai, K.; Degaleesan, S. S.; Fonseca, E. R.; Lake, E. Advanced Computational Modeling of Proppant Settling in Water Fractures for Shale Gas Production; Society of Petroleum Engineers: The Woodlands, Texas, USA, 2012. https://doi.org/10.2118/151607-MS.
(83)
Upadhyay, M.; Park, H. C.; Choi, H. S. Multiphase Fluid Dynamics Coupled Fast Pyrolysis of Biomass in a Rectangular Bubbling Fluidized Bed Reactor: Process Intensification. Chemical Engineering and Processing – Process Intensification 2018, 128, 180–187. https://doi.org/10.1016/j.cep.2018.04.028.
(84)
Upadhyay, M.; Park, H. C.; Hwang, J. G.; Choi, H. S.; Jang, H.-N.; Seo, Y.-C. Computational Particle-Fluid Dynamics Simulation of Gas-Solid Flow in a Circulating Fluidized Bed with Air or O 2 /CO 2 as Fluidizing Gas. Powder Technology 2017, 318, 350–362. https://doi.org/10.1016/j.powtec.2017.06.021.
(85)
Vashisth, S.; Ahmadi Motlagh, A. H.; Tebianian, S.; Salcudean, M.; Grace, J. R. Comparison of Numerical Approaches to Model FCC Particles in Gas–Solid Bubbling Fluidized Bed. Chemical Engineering Science 2015, 134, 269–286. https://doi.org/10.1016/j.ces.2015.05.001.
(86)
Vivacqua, V.; Vashisth, S.; Hébrard, G.; Grace, J. R.; Epstein, N. Characterization of Fluidized Bed Layer Inversion in a 191-Mm-Diameter Column Using Both Experimental and CPFD Approaches. Chemical Engineering Science 2012, 80, 419–428. https://doi.org/10.1016/j.ces.2012.06.042.
(87)
Vivacqua, V.; Vashisth, S.; Prams, A.; Hébrard, G.; Epstein, N.; Grace, J. R. Experimental and CPFD Study of Axial and Radial Liquid Mixing in Water-Fluidized Beds of Two Solids Exhibiting Layer Inversion. Chemical Engineering Science 2013, 95, 119–127. https://doi.org/10.1016/j.ces.2013.03.011.
(88)
Wang, Q.; Yang, H.; Wang, P.; Lu, J.; Liu, Q.; Zhang, H.; Wei, L.; Zhang, M. Application of CPFD Method in the Simulation of a Circulating Fluidized Bed with a Loop Seal Part I—Determination of Modeling Parameters. Powder Technology 2014, 253, 814–821. https://doi.org/10.1016/j.powtec.2013.11.041.
(89)
Wang, Q.; Yang, H.; Wang, P.; Lu, J.; Liu, Q.; Zhang, H.; Wei, L.; Zhang, M. Application of CPFD Method in the Simulation of a Circulating Fluidized Bed with a Loop Seal Part II—Investigation of Solids Circulation. Powder Technology 2014, 253, 822–828. https://doi.org/10.1016/j.powtec.2013.11.040.
(90)
Weber, J. M.; Layfield, K. J.; Van Essendelft, D. T.; Mei, J. S. Fluid Bed Characterization Using Electrical Capacitance Volume Tomography (ECVT), Compared to CPFD Software’s Barracuda. Powder Technology 2013, 250, 138–146. https://doi.org/10.1016/j.powtec.2013.10.005.
(91)
Xie, J.; Zhong, W.; Jin, B.; Shao, Y.; Liu, H. Simulation on Gasification of Forestry Residues in Fluidized Beds by Eulerian–Lagrangian Approach. Bioresource Technology 2012, 121, 36–46. https://doi.org/10.1016/j.biortech.2012.06.080.
(92)
Xie, J.; Zhong, W.; Jin, B.; Shao, Y.; Huang, Y. Eulerian–Lagrangian Method for Three-Dimensional Simulation of Fluidized Bed Coal Gasification. Advanced Powder Technology 2013, 24 (1), 382–392. https://doi.org/10.1016/j.apt.2012.09.001.
(93)
Yin, S.; Zhong, W.; Jin, B.; Fan, J. Modeling on the Hydrodynamics of Pressurized High-Flux Circulating Fluidized Beds (PHFCFBs) by Eulerian–Lagrangian Approach. Powder Technology 2014, 259, 52–64. https://doi.org/10.1016/j.powtec.2014.03.059.
(94)
Zhang, Y.; Lan, X.; Gao, J. Modeling of Gas-Solid Flow in a CFB Riser Based on Computational Particle Fluid Dynamics. Petroleum Science 2012, 9 (4), 535–543. https://doi.org/10.1007/s12182-012-0240-7.
(95)
Zhang, Y.; Wei, Q. CPFD Simulation of Bed-to-Wall Heat Transfer in a Gas-Solids Bubbling Fluidized Bed with an Immersed Vertical Tube. Chemical Engineering and Processing: Process Intensification 2017, 116, 17–28. https://doi.org/10.1016/j.cep.2017.03.007.
(96)
Zhao, P.; O’Rourke, P. J.; Snider, D. Liquid Injection into Fluidized Beds; AIChE: New Orleans, LA, 2008; p 8 https://www.aiche.org/conferences/aiche-spring-meeting-and-global-congress-on-process-safety/2008/proceeding/paper/139d-liquid-injection-fluidized-beds.
(97)
Zhao, P.; O’Rourke, P. J.; Snider, D. Three-Dimensional Simulation of Liquid Injection, Film Formation and Transport, in Fluidized Beds. Particuology 2009, 7 (5), 337–346. https://doi.org/10.1016/j.partic.2009.07.002.